Jump to content
主视角中国

Rorschach

网站版主
  • 帖子总数

    19,849
  • 注册时间

  • 上次访问

由 Rorschach 发布的全部内容

  1. 每次去都住黑天鹅的飘过。。。
  2. 话说PLA该如何应对乜 The National Robotics Engineering Center (NREC) developed sensing, teleoperation and autonomy packages for BAE Systems' Black Knight, a prototype unmanned ground combat vehicle (UGCV). Black Knight demonstrates how UGCVs can be used in the field and showcases current robotics technologies. NREC applied its expertise in sensor fusion, unmanned systems, obstacle detection, path planning, autonomy and teleoperation to improve Black Knight's mission performance and support Soldier operation. Black Knight's Robotic Operator Control Station (ROCS) displays images from the vehicle's driving cameras and includes a game controller-style hand controller and a touch screen interface for maps and vehicle systems. Black Knight can be used day or night for missions that are too risky for a manned ground vehicle (including forward scouting, reconnaissance surveillance and target acquisition, (RSTA), intelligence gathering, and investigating hazardous areas) and can be integrated with existing manned and unmanned systems. It enables operators to acquire situational data from unmanned forward positions and verify mission plans by using map data to confirm terrain assumptions. Black Knight demonstrates the advanced capabilities that are available to unmanned ground combat vehicles (UGCVs) using current technology. Its 300 hp diesel engine gives it the power to reach speeds of up to 48 mph, with off-road autonomous and teleoperation speeds up to 15 mph. Its band-tracked drive makes it highly mobile in extreme off-road terrain while reducing its acoustic and thermal signatures. The 12-ton Black Knight can be transported within a C-130 cargo plane and makes extensive use of components from the Bradley Combat Systems program to reduce costs and simplify maintenance. Black Knight can be teleoperated from within another vehicle (for example, from the commander's station of a Bradley Fighting Vehicle) or by dismounted Soldiers. Its Robotic Operator Control Station (ROCS) provides an easy-to-use interface for teleoperating the vehicle. Black Knight's autonomous and semi-autonomous capabilities help its operators to plan efficient paths, avoid obstacles and terrain hazards, and navigate from waypoint to waypoint. Assisted teleoperation combines human driving with autonomous safeguarding. Black Knight was extensively tested both off-road and on-road in the Air Assault Expeditionary Force (AAEF) Spiral D field exercises in 2007, where it successfully performed forward observation missions and other tasks. Black Knight gave Soldiers a major advantage during both day and night operations. The vehicle did not miss a single day of operation in over 200 hours of constant usage. NREC developed Black Knight's vehicle controller, tele-operation, perception and safety systems. Black Knight's perception and control module includes Laser Radar (LADAR), high-sensitivity stereo video cameras, FLIR thermal imaging camera, and GPS. With its wireless data link, the sensor suite supports both fully-autonomous and assisted (or semi-autonomous) driving. Black Knight's autonomous navigation features include fully-automated route planning and mission planning capabilities. It can plan routes between waypoints – either direct, straight-line paths or paths with the lowest terrain cost (that is, the lowest risk to the vehicle). Black Knight's perception system fuses LADAR range data and camera images to detect both positive and negative obstacles in its surroundings, enabling its autonomous navigation system to avoid them. These autonomy capabilities can also assist Black Knight's driver during teleoperation. Black Knight can plan paths to be manually driven by its operator. In “guarded teleoperation” mode, objects that are detected by the perception system are overlaid on the driving map, enabling drivers to maneuver around them. The vehicle also stops when it detects lethal obstacles in its path. Black Knight is driven from the Robotic Operator Control Station (ROCS), located within another vehicle. It can also be driven off-board via its safety controller. The ROCS displays images from the vehicle's color and FLIR driving cameras and includes a hand controller for steering the vehicle and operating its sensors. It also allows the driver to control and view the status of the various vehicle and sensor systems. Map and route displays help the driver to navigate through unfamiliar terrain. The ROCS also allows operators to control the Commander's Independent View (CIV) sensor suite. The CIV is used for remote surveillance and target acquisition (RSTA) and includes color video and FLIR cameras.
×
×
  • 创建新的...